ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ ИМПЕРАТОРА ПЕТРА I»

Агроинженерный факультет

Кафедра электрификации сельского хозяйства

УТВЕРЖДАЮ

Заведующий кафедрой электрификации с.х.

Картавцев В.В.

«18» ноября 2015 г.

Фонд оценочных средств

по дисциплине Б1.В.ОД.18 **«Электрооборудование и средства** автоматизации»

для направления 35.03.06 «Агроинженерия», профиля «Технологическое оборудование для хранения и переработки сельскохозяйственной продукции» —

академический бакалавриат

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

		п	,	целы	ы
Индекс	Формулировка	дисциплины (темы)			
		1	2	3	4
ОПК-9	Готовность к использованию технических				
	средств автоматики и систем автоматизации			+	+
	технологических процессов				
ПК-1	Готовность изучать и использовать научно-				
	техническую информацию, отечественный и	+		+	
	зарубежный опыт по тематике исследований			•	
ПК-2	Готовность к участию в проведении				
	исследований рабочих и технологических	+	+	+	+
	процессов машин	'	•	•	•

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

2.1 Шкала академических оценок освоения дисциплины

Виды оценок	Оценки				
Академическая оценка по 2-х балльной шкале (зачет)	не зачтено	зачтено			

2.2 Текущий контроль

	2.2 Текущий контроль	Раздел			Форма		№ Задания	
Код	Планируемые результаты	дисци- плины (темы)	Содержание требования в разрезе разделов дисциплины	Технология формирова- ния	оценочн. средства (контро- ля)	Пороговый уровень (удовл.)	Повышен- ный уровень (хорошо)	Высокий уровень (отлично)
ОПК-9	- знать правила эксплуатации	3, 4	Сформированные	Лаборатор-	Устный	Задания	Задания из	Задания из
	электрифицированных установок;		знания, позволяющие	ные	опрос,	из раздела	раздела 3.2	раздела
	- уметь ориентироваться в электрических		грамотно и профес-	работы,	тестиро-	3.2		3.2
	схемах и схемах автоматизации установок		сионально исполь-	самостоя-	вание			
	сельскохозяйственного производства;		зовать технические	тельная		Тесты из	Тесты из	Тесты из
	-иметь навыки выбора		средства автоматики	работа,		раздела	раздела 3.3	раздела
	электрооборудования и средств		и системы автома-	лекции		3.3		3.3
	автоматизации и организации их		тизации технологи-					
	эксплуатации		ческих процессов					
ПК-1	- знать технологические основы	1, 2	Сформированные	Лаборатор	Устный	Задания	Задания из	Задания
	электрифи-кации и автоматизации		знания, позволяющие	ные	_ ·	из раздела	раздела 3.2	из раздела
	производственных процессов переработки		грамотно и профес-	работы,	тестиро-	3.2		3.2
	сх. продукции;		сионально эксплуати-	самостояте	вание		_	
	- уметь самостоятельно решать задачи,		ровать машины,	льная		Тесты из	Тесты из	Тесты из
	возникающие в процессе эксплуатации		технологическое	работа,		раздела	раздела 3.3	раздела
	технологического оборудования;		оборудование и	лекции		3.3		3.3
	- иметь навыки работы со справочной и		электроустановки					
	нормативно-технической документацией.							
ПК-2	- знать устройство, принцип действия,	1-4	Сформированные	Лаборатор	Устный	Задания	Задания из	Задания
	основные характеристики электрооборудо-		знания, позволяющие	ные	опрос,	из раздела	раздела 3.2	из раздела
	вания и средств автоматизации;		грамотно исполь-	работы,	тестиро-	3.2		3.2
	- уметь измерять, рассчитывать и анализи-		зовать технические	самостояте	вание		_	
	ровать параметры и основные характерис-		средства для	льная		Тесты из	Тесты из	Тесты из
	тики технологического оборудования;		определения пара-	работа,		раздела	раздела 3.3	раздела
	- иметь навыки подключения, расчета и		метров технологи-	лекции		3.3		3.3
	выбора электрооборудования и средств		ческих процессов и					
	автоматизации		качества продукции					

2.3 Промежуточная аттестация

			Форма		№ Задания	
I/or	Hyayyyayyayya a anyun mamyy	Технология	оценочного	Пороговый	Повышенный	Высокий
Код	Планируемые результаты	формирования	средства	уровень	уровень	уровень
			(контроля)	(удовл.)	(хорошо)	(отлично)
ОПК-9	- знать правила эксплуатации	Лабораторные	Зачёт	Задания из	Задания из	Задания из
	электрифицированных установок;	работы, само-		раздела 3.2	раздела 3.2	раздела 3.2
	- уметь ориентироваться в электрических	стоятельная				
	схемах и схемах автоматизации установок	работа		Тесты из раздела	Тесты из раздела	Тесты из раздела
	сельскохозяйственного производства;			3.3	3.3	3.3
	-иметь навыки выбора электрооборудования и					
	средств автоматизации и организации их					
	эксплуатации					
ПК-1	- знать технологические основы	Лабораторные	Зачёт	Задания из	Задания из	Задания из
	электрификации и автоматизации	работы, само-		раздела 3.2	раздела 3.2	раздела 3.2
	производственных процессов переработки с	стоятельная				
	х. продукции;	работа			Тесты из раздела	Тесты из раздела
	- уметь самостоятельно решать задачи,			3.3	3.3	3.3
	возникающие в процессе эксплуатации					
	технологического оборудования;					
	- иметь навыки работы со справочной и					
	нормативно-технической документацией.					
ПК-2	- знать устройство, принцип действия,	Лабораторные	Зачёт	Задания из	Задания из	Задания из
	основные характеристики	работы, само-		раздела 3.2	раздела 3.2	раздела 3.2
	электрооборудования и средств	стоятельная				
	автоматизации;	работа			Тесты из раздела	Тесты из раздела
	- уметь измерять, рассчитывать и			3.3	3.3	3.3
	анализировать параметры и основные					
	характеристики технологического					
	оборудования;					
	- иметь навыки подключения, расчета и					
	выбора электрооборудования и средств					
	автоматизации					

2.4 Критерии оценки на зачете

Оценка, уровень	Критерии
Зачтено,	Обучающийся показал прочные знания основных положений
высокий уровень	учебной дисциплины, умение самостоятельно решать
	конкретные практические задачи повышенной сложности,
	свободно использовать справочную литературу, делать
	обоснованные выводы
Зачтено,	Обучающийся показал прочные знания основных положений
повышенный уровень	учебной дисциплины, умение самостоятельно решать
	конкретные практические задачи, предусмотренные рабочей
	программой, ориентироваться в рекомендованной справочной
	литературе, умеет правильно оценить полученные результаты.
Зачтено,	Обучающийся показал знание основных положений учебной
пороговый уровень	дисциплины, умение получить с помощью преподавателя
	правильное решение конкретной практической задачи из числа
	предусмотренных рабочей программой, знакомство с
	рекомендованной справочной литературой
Не зачтено	При ответе обучающегося выявились существенные пробелы в
	знаниях основных положений учебной дисциплины, неумение
	с помощью преподавателя получить правильное решение
	конкретной практической задачи из числа предусмотренных
	рабочей программой учебной дисциплины

2.5 Критерии оценки устного опроса

Оценка	Критерии
	выставляется обучающемуся, если он четко выражает свою точу зрения
«зачтено»	по рассматриваемым вопросам, приводя соответствующие примеры,
«зачтено»	при этом при ответе допускаются отдельные погрешности в знаниях
	основного учебно-программного материала
	выставляется обучающемуся, если он обнаруживает существенные пробелы в знаниях основных положений учебной дисциплины,
«не зачтено»	неумение с помощью преподавателя получить правильное решение конкретной практической задачи из числа предусмотренных рабочей
	программой учебной дисциплины

2.6 Критерии оценки тестов

Ступени уровней	Отличительные признаки	Показатель оценки
освоения		сформированной
компетенций		компетенции
	Обучающийся воспроизводит	Не менее 55 % баллов за
Пороговый	термины, основные понятия, способен	задания теста.
	узнавать языковые явления.	
	Обучающийся выявляет взаимосвязи,	Не менее 75 % баллов за
Продвинутый	классифицирует, упорядочивает,	задания теста.
тіродынутый	интерпретирует, применяет на	
	практике пройденный материал.	
Высокий	Обучающийся анализирует, оценивает,	Не менее 90 % баллов за
Высокии	прогнозирует, конструирует.	задания теста.
Компетенция не		Менее 55 % баллов за
сформирована		задания теста.

2.7 Критерии оценки реферата

Оценка, уровень	Критерии
Отлично,	Выполнены все требования к написанию реферата: тема
высокий уровень	раскрыта полностью, реферат имеет чёткую структуру,
	выдержан объём, сделаны выводы, имеется список
	используемой литературы и сделаны ссылки на неё,
	соблюдены требования к оформлению
Хорошо,	Основные требования к реферату выполнены, но при этом
повышенный уровень	допущены недочёты: имеются неточности в изложении
	материала, не выдержан объём реферата, имеются
	упущения в оформлении
Удовлетворительно,	Имеются существенные отступления от требований к
пороговый уровень	реферату: тема освещена частично, допущены фактические
	ошибки в содержании, не сделаны выводы
Неудовлетворительно	Тема реферата не раскрыта, обнаруживается существенное
	непонимание материала

2.8 Допуск к сдаче зачета

- 1. Посещение лекций. Допускается один пропуск без предъявления справки.
- 2. Посещение лабораторных занятий. В случае пропуска обязательная отработка.
- 3. Сдача всех лабораторных работ.
- 4. Выполнение заданий самостоятельной работы.

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1 Вопросы к экзамену

Не предусмотрен

3.2 Вопросы к зачёту

- 1. Понятие электрический привод и его классификация.
- 2. Структура современного электропривода.
- 3. Механические характеристики производственных механизмов.
- 4. Механические характеристики электродвигателей.
- 5. Переходные режимы в электроприводах.
- 6. Уравнение движения электрического привода.
- 7. Классификация механических характеристик.
- 8. Расчет продолжительности переходных процессов.
- 9. Нагрев и охлаждение электродвигателей.
- 10. Нагрузочные диаграммы электродвигателей.
- 11.Общая методика выбора электродвигателей.
- 12. Расчет мощности электродвигателя при различных режимах работы.
- 13. Проверка электродвигателя при пуске на перегрузочную способность.
- 14. Аппаратура управления и защиты. Назначение и классификация.
- 15. Коммутационная аппаратура ручного управления.
- 16. Аппаратура автоматического управления.
- 17. Аппаратура защиты.
- 18. Бесконтактная аппаратура управления и защиты.
- 19. Выбор коммутационной и защитной аппаратуры.
- 20.Воздействующие факторы при обработке с./х. продукции электромагнитными полями.
 - 21. Электродный и элементный нагрев.
 - 22. Электроконтактный нагрев.
 - 23. Электротехнологии, применяемые при хранении и переработке с./х. продукции.
 - 24. Технологические особенности работы электроприводов.
 - 25. Условия окружающей среды и их влияние на работу электрооборудования.
 - 26.Основные светотехнические понятия.
 - 27. Электрические источники света. Их классификация.
 - 28. Тепловые источники оптического излучения.
 - 29. Газоразрядные источники оптического излучения.
 - 30.Осветительные приборы.
- 31. Коэффициент мощности в электросиловых установках и способы его повышения.
 - 32. Установки для активного вентилирования зерна.
 - 33. Электрооборудование и автоматизация подъемно-транспортных машин.
 - 34. Электрооборудование машин по первичной переработки молока.
 - 35. Электрооборудование и автоматизация технологических линий.
 - 36. Классификация элементов автоматических систем.

Практические задачи

Используя паспортные данные трехфазных асинхронных электродвигателей, приведённые в таблице, рассчитать: 1) номинальную частоту вращения; 2) номинальный вращающий момент на валу; 3) потребляемые из сети активную, реактивную, и полную мощности при номинальной нагрузке; 4) пусковой момент; 5) максимальный (критический) момент; 6) номинальные (линейный и фазный) токи обмоток статора; 7) пусковой ток.

№ варианта	Тип	Мощность Р ₂ , кВт	Скольжение _{Sном} , %	КПД η,%	cos φ	$\frac{M_{max}}{M_{\text{HoM}}}$	$\frac{M_{_{\Pi}}}{M_{_{HOM}}}$	$\frac{I_{\Pi}}{I_{\text{HOM}}}$	Линейное напряжение сети U _л , B
1	2	3	4	5	6	7	8	9	10
	Синхронная частота вращения $n_0 = 3000$ мин ⁻¹								
1	АИР71А2	0,75	6	78,5	0,83	2,2	2,1	6	220
2	АИР71В2	1,1	6,5	79	0,83	2,2	2,1	6	220
3	АИР80А2	1,5	5	81	0,85	2,2	2,1	7	380
4	АИР80В2	2,2	5	83	0,87	2,2	2	7	380
5	AИP90L2	3	5	84,5	0,88	2,2	2	7	220
6	АИР100S2	4	5	87	0,88	2,2	2	7,5	380
7	АИР100L2	5,5	5	88	0,89	2,2	2	7,5	380
8	АИР112М2	7,5	3,5	87,5	0,88	2,2	2	7,5	380
9	АИР132М2	11	3	88	0,9	2,2	1,6	7,5	220
10	АИР160S2	15	3	89	0,89	2,7	1,8	7	220
11	АИР160М2	18,5	3	89,5	0,9	2,7	1,8	7	380
12	АИР180S2	22	2,7	89,5	0,88	2,7	1,7	7	380
13	АИР180М2	30	2,5	90,5	0,88	2,7	1,7	7,5	380
14	4А112М2У3	7,5	2,6	87,5	0,88	2,2	2,0	7,5	220
15	4А200М2У3	37	1,9	90	0,89	2,2	1,4	7,5	220
16	4A200L2У3	45	1,8	91	0,9	2,2	1,4	7,5	380
17	4А225М2У3	55	2,1	91	0,92	2,2	1,2	7,5	220
18	4A225S2У3	75	1,4	91	0,89	2,2	1,2	7,5	220
19	4A250M2У3	90	1,4	92	0,9	2,2	1,2	7,5	220
20	4A280S2У3	110	2	91	0,89	2,2	1,2	7	380
	Син	хронна	ая част	ота вра	щения і	$n_0 = 150$	0 мин-1		
21	АИР71А4	0,55	9,5	70,5	0,7	2,3	2,2	5	220
22	АИР71В4	0,75	10	73	0,73	2,2	2,2	5	220
23	АИР80А4	1,1	7	75	0,81	2,2	2,2	5,5	380
24	АИР80В4	1,5	7	78	0,83	2,2	2,2	5,5	220
25	АИР90L4	2,2	7	81	0,83	2,2	2,1	6,5	380
26	АИР100S4	3	6	82	0,83	2,2	2	7	380

№ варианта	Тип	Мощность Р2, кВт	Скольжение _{Sном} , %	КПД η,%	cos φ	$\frac{M_{max}}{M_{HOM}}$	$\frac{M_{\pi}}{M_{\text{hom}}}$	$\frac{I_{\Pi}}{I_{\text{HOM}}}$	Линейное напряжение сети U _л , B
27	АИР100L4	4	6	85	0,84	2,2	2	7	380
28	АИР112М4	5,5	4,5	87,5	0,88	2,2	2	7	220
29	АИР132S4	7,5	4	87,5	0,86	2,2	2	7,5	220
30	АИР132М4	11	3,5	87,5	0,87	2,2	2	7,5	380
31	АИР160S4	15	3	89,5	0,89	2,9	1,9	7	380
32	АИР160М4	18,5	3	90	0,89	2,9	1,9	7	220
33	АИР180S4	22	2,5	90	0,87	2,4	1,5	6,5	380
34	АИР180М4	30	2	91,5	0,86	2,7	1,7	7	380
35	4A200M2У3	37	1,7	91	0,9	2,2	1,4	7	380
36	4A200L2У3	45	1,8	92	0,9	2,2	1,4	7	220
37	4А225М2У3	55	2	92,5	0,9	2,2	1,2	7	220
38	4A225S2У3	75	1,4	93	0,9	2,2	1,2	7	380
39	4A250M2У3	90	1,3	93	0,91	2,2	1,2	7	380
	Син	хронна	ая част	ота вра	щения	$n_0 = 150$	0 мин ⁻¹		
40	4A280S2У3	110	2,3	92,5	0,9	2	1,2	7	380
41	АИР71А6	0,37	8,5	65	0,66	2,2	2	4,5	220
42	АИР71В6	0,55	8,5	68,5	0,7	2,2	2	4,5	220
43	АИР80А6	0,75	8	70	0,72	2,2	2	4,5	380
44	АИР80В6	1,1	8	74	0,74	2,2	2	4,5	380
45	АИР90L6	1,5	7,5	76	0,72	2,2	2	6	220
46	АИР100L6	2,2	5,5	81	0,74	2,2	2	6	220
47	АИР112МА6	3	5	81	0,76	2,2	2	6	380
48	АИР112МВ6	4	5	82	0,81	2,2	2	6	380
49	АИР132S6	5,5	4	85	0,8	2,2	2	7	220
50	АИР132М6	7,5	4	85	0,81	2,2	2	7	220
51	АИР160S6	11	3	87	0,84	2,5	1,7	6,5	220
52	АИР160М6	15	3	88	0,85	2,6	1,7	6,5	380
53	АИР180М6	18,5	2	88	0,85	2,4	1,6	6,5	380
54	4А132М6У3	7,5	3,2	85,5	0,81	2,2	2	7	380
55	4A160L6У3	11	3	86	0,86	2	1,2	6	380
56	4А200М6У3	22	2,5	90	0,9	2	1,2	6,5	220
57	4A200L6У3	30	2,3	90,5	0,9	2	1,2	6,5	220
58	4А225М6У3	37	2	91	0,89	2	1,2	6,5	380
59	4A250L6У3	45	1,5	91,5	0,89	2	1,2	7	380
60	4A280S6У3	75	2,0	92	0,89	2,2	1,2	7	380

3.3 Тестовые задания

- **1**. При каком характере нагрузки вторичное напряжение трансформатора увеличивается при возрастании тока I_2 ?
 - 1) При активной нагрузке.
 - 2) При активно-индуктивной нагрузке.
 - 3) При индуктивной нагрузке.
 - 4) При ёмкостной нагрузке.
- 2. Как изменятся магнитные потери силового трансформатора, работавшего в режиме холостого хода, если его перевести в режим опыта короткого замыкания?
 - 1) Потери уменьшатся более, чем в сто раз.
 - 2) Потери уменьшатся примерно вдвое.
 - 3) Потери немного увеличатся.
 - 4) Потери останутся без изменений.
- 3. К чему приводит несовпадение групп соединений обмоток параллельно работающих силовых трансформаторов?
 - 1) Форма напряжения на общих шинах, к которым подключены вторичные обмотки трансформаторов, становится несинусоидальной.
 - 2) Ток холостого хода каждого трансформатора значительно увеличивается.
 - 3) Появляются уравнительные токи, достигающие в пределах уровня (0,5...0,75) I_{2H} .
 - 4) Уравнительные токи в обмотках существенно превышают их номинальные величины.
- **4.** Какое ограничение устанавливает ГОСТ на группы соединений обмоток трёхфазного трансформатора?
 - 1) Нулевая и первая.
 - 2) Нулевая и одиннадцатая.
 - 3) Только одиннадцатая.
 - 4) Нулевая, одиннадцатая и шестая.
- **5.** Если на щитке трёхфазного понижающего трансформатора изображено Δ/Y , то обмотки соединены по следующей схеме...
 - 1) Обмотки высшего напряжения соединены последовательно, обмотки низшего напряжения параллельно.
 - 2) Первичные обмотки соединены звездой, вторичные треугольником.
 - 3) Обмотки низшего напряжения соединены треугольником, обмотки высшего напряжения звездой.
 - 4) Первичные обмотки соединены треугольником, вторичные звездой.
- **6.** Если w_1 число витков первичной обмотки, а w_2 число витков вторичной обмотки, то однофазный трансформатор является понижающим, когда...
 - 1) $w_1 > w_2$.
 - 2) $w_1 < w_2$.
 - 3) $w_1 + w_2 = 0$.
 - 4) $w_1 = w_2$.
- 7. На каком законе основан принцип действия трансформатора?
 - 1) На законе Ампера.
 - 2) На принципе Ленца.
 - 3) На законе электромагнитной индукции.
 - 4) На первом законе Кирхгофа.
- 8. Магнитопровод трансформатора выполняется из электротехнической стали для...
 - 1) Уменьшения ёмкостной связи между обмотками.
 - 2) Увеличения магнитной связи между обмотками.
 - 3) Повышения жёсткости конструкции.
 - 4) Удобства сборки.
- 9. Основными элементами конструкции трансформатора являются...

- 1) Каркас из неферромагнитного материала, на котором располагаются обмотки первичная и вторичная, образующие делитель напряжения.
- 2) Каркас из неферромагнитного материала, на котором располагается одна обмотка.
- 3) Неподвижные обмотки первичная и вторичная, связанные посредством электрического поля из-за ёмкостной связи между ними.
- 4) Магнитопровод из листовой электротехнической стали и обмотки первичная и вторичная, связанные индуктивно при помощи магнитного потока.
- 10. Сердечник силового трансформатора выполняется из...
 - 1) Аллюминия.
 - 2) Любого материала.
 - 3) Электротехнической меди.
 - 4) Электротехнической стали.
- **11.** Почему сердечник трансформатора выполняют из электрически изолированных друг от друга пластин электротехнической стали?
 - 1) Для уменьшения массы сердечника.
 - 2) Для увеличения электрической прочности сердечника.
 - 3) Для уменьшения вихревых токов.
 - 4) Для упрощения конструкции трансформатора.
- 12. Как обозначаются начала первичной обмотки трехфазного трансформатора?
 - 1) a, b, c
 - 2) x, y, z
 - 3) A, B, C
 - 4) X, Y, Z
- **13.** Как соединены первичная и вторичная обмотки трехфазного трансформатора, если трансформатор имеет 11 группу (Y звезда, Δ треугольник)?
 - 1) Y/Δ
 - 2) Δ/Y
 - 3) Y/Y
 - 4) Δ/Δ
- **14.** Как отличаются по массе магнитопровод и обмотка обычного трансформатора от автотрансформатора, если коэффициенты трансформации одинаковы k = 1,95? Мощность и номинальные напряжения аппаратов одинаковы.
 - 1) Массы магнитопровода и обмотки автотрансформатора меньше масс магнитопровода и обмоток обычного трансформатора соответственно.
 - 2) Масса магнитопровода автотрансформатора меньше массы магнитопровода обычного трансформатора, а массы обмоток равны.
 - 3) Массы магнитопровода и обмоток обычного трансформатора меньше, чем у соответствующих величин автотрансформатора.
 - 4) Масса обмотки автотрансформатора меньше массы обмоток обычного трансформатора, а массы магнитопроводов равны.
- **15.** Что произойдет с трансформатором, если его включить в сеть постоянного напряжения той же величины?
 - 1) Ничего не произойдет.
 - 2) Может сгореть.
 - 3) Уменьшится основной магнитный поток.
 - 4) Уменьшится магнитный поток рассеяния первичной обмотки.
- **16.** Как передается электрическая энергия из первичной обмотки автотрансформатора во вторичную?
 - 1) Электрическим путем.
 - 2) Электромагнитным путем.
 - 3) Электрическим и электромагнитным путем.
 - 4) Как в обычном трансформаторе.
- 17. Выберите формулу закона электромагнитной индукции:

- 1) $e = W \cdot \frac{d\Phi}{dt}$. 2) $e = -W \cdot \frac{d\Phi}{dt}$. 3) $e = -\frac{1}{W} \cdot \frac{d\Phi}{dt}$. 4) $e = \frac{1}{W} \cdot \frac{d\Phi}{dt}$.
- 18. Что произойдет с током первичной обмотки трансформатора, если нагрузка трансформатора увеличится?
 - 1) Не изменится.
 - 2) Увеличится.
 - 3) Уменьшится.
 - 4) Станет равным нулю.
- 19. В каком режиме работает измерительный трансформатор напряжения?
 - 1) В режиме холостого хода.
 - 2) В режиме близком к режиму холостого хода.
 - 3) В номинальном режиме.
 - 4) В режиме короткого замыкания.
- 20. Что произошло с нагрузкой трансформатора, если ток первичной обмотки уменьшился?
 - 1) Осталась неизменной.
 - 2) Увеличилась.
 - 3) Уменьшилась.
 - 4) Сопротивление нагрузки стало равным нулю.
- 21. В каком режиме работает измерительный трансформатор тока?
 - 1) В режиме холостого хода.
 - 2) В режиме близком к режиму холостого хода.
 - 3) В номинальном режиме.
 - 4) В режиме короткого замыкания.
- 22. В трансформаторе, понижающем напряжение с 220 В до 6,3 В, можно использовать проводники сечениями S_1 =1 мм² и S_2 =9 мм². Как правильно использовать провод с сечением $S_1=1$ мм²:
 - 1) Только в обмотке высшего напряжения (220 В).
 - 2) Только в обмотке низшего напряжения (6,3 В).
 - 3) Обе обмотки намотать проводом сечением $S_2=9$ мм².
 - 4) Обе обмотки намотать проводом сечением $S_1=1 \text{ мм}^2$.
- 23. Изменится ли магнитный поток в сердечнике трансформатора, если во вторичной обмотке ток возрос в 3 раза:
 - 1) Увеличится в 3 раза.
 - 2) Уменьшится в 3 раза.
 - 3) Не изменится.
 - 4) Увеличится в 9 раз.
- 24. Выберите правильное написание действующего значения ЭДС вторичной обмотки трансформатора.
 - 1) $E_2 = 2.22 \cdot w_2 \cdot f \cdot \Phi_m$.
 - 2) $E_2 = 2,22 \cdot f \cdot \Phi_m / w_2$.
 - 3) $E_2 = 4,44 \cdot w_2 \cdot f \cdot \Phi_m$.
 - 4) $E_2 = 4.44 \cdot w_2 \cdot \Phi_m / f$.
- **25.** Как соотносятся по величине напряжение короткого замыкания U_{1k} и номинальное U_{1h} в трансформаторах средней мощности?
 - 1) $U_{1\kappa} \approx 0.05 U_{1H}$.
 - 2) $U_{1\kappa} \approx 0.5 U_{1H}$.
 - 3) $U_{1\kappa} \approx 0.75~U_{1H}$.
 - 4) $U_{1\kappa} \approx U_{1H}$.

- **26.** Какие параметры Т-образной схемы замещения трансформатора определяются из опыта холостого хода? 1) r_0 , r_1 . 2) r_2' , X'_2 .
- 4) r_1 , X_1 . **27.** Когда трансформатор имеет максимальное значение КПД?
 - 1) $P_{cT} = 0$, $P_{obm} \neq 0$.
 - 2) $P_{cT} \neq 0$, $P_{obm} = 0$.
 - 3) $P_{cT} = 0$, $P_{obm} = 0$.
 - 4) $P_{cT} \approx P_{obm}$.

3) r_0 , X_0 .

- 28. Выберите режим холостого хода трансформатора.
 - 1) $U_1 = U_{1H}$, $I_1 \neq 0$, $U_2 \neq 0$, $I_2 = 0$.
 - 2) $U_1 = U_{1H}$, $I_1 \neq 0$, $U_2 \neq 0$, $I_2 \neq 0$.
 - 3) $U_1 = U_{1H}$, $I_1 \neq 0$, $U_2 = 0$, $I_2 = 0$.
 - 4) $U_1 = U_{1H}$, $I_1 = 0$, $U_2 \neq 0$, $I_2 = 0$.
- **29.** Какие из ниже перечисленных величин определяются из опыта короткого замыкания трансформатора?
 - 1) I_0 , $I_{1\kappa}$.
 - 2) $I_{1\kappa}$, $P_{c\tau}$.
 - 3) $U_{1\kappa}$, $P_{o\delta M}$.
 - 4) I_0 , P_{ct} .
- 30. Какие параметры Т-образной схемы замещения трансформатора определяются из опыта короткого замыкания?
 - 1) r_0 , r_1 .
 - 2) r'_2 , X'_2 .
 - 3) r_0 , X_0 .
 - 4) r'_2 , X_0 .
- 31. Выберите режим короткого замыкания трансформатора.
 - 1) $U_1 = U_{1H}$, $I_1 \neq 0$, $U_2 \neq 0$, $I_2 = 0$.
 - 2) $U_1 = U_{1H}$, $I_1 \neq 0$, $U_2 \neq 0$, $I_2 \neq 0$.
 - 3) $U_1 = U_{1H}$, $I_1 \neq 0$, $U_2 = 0$, $I_2 \neq 0$.
 - 4) $U_1 = U_{1H}$, $I_1 = 0$, $U_2 = 0$, $I_2 = 0$.
- 32. Какие из ниже перечисленных величин определяются из опыта холостого хода?
 - 1) I_0 , $I_{1\kappa}$.
 - 2) $I_{1\kappa}$, $P_{c\tau}$.
 - 3) $U_{1\kappa}$, P_{obm} .
 - 4) I₀, P_{ct}.
- **33.** Как соотносятся по величине токи холостого хода I_0 и номинальный I_{1H} в трансформаторах средней мощности?
 - 1) $I_0 \approx 0.05 I_{1H}$.
 - 2) $I_0 \approx 0.5 I_{1H}$.
 - 3) $I_0 \approx 0.6 I_{1H}$.
 - 4) $I_0 \approx 0.75 I_{1H}$.
- 34. Какой режим работы соответствует опыту короткого замыкания трансформатора?
 - 1) $U_1 = U_{1H}$, $I_1 \neq 0$, $U_2 \neq 0$, $I_2 = 0$.
 - 2) $U_1 = U_{1H}$, $I_1 \neq 0$, $U_2 \neq 0$, $I_2 \neq 0$.
 - 3) $U_1 = U_{1\kappa}$, $I_1 = I_{1H}$, $U_2 = 0$, $I_2 = I_{2H}$.
 - 4) $U_1 = U_{1\kappa}$, $I_1 = I_{1H}$, $U_2 = 0$, $I_2 = 0$.
- 35. Выберите правильное написание уравнения баланса напряжения для первичной обмотки трансформатора.
 - 1) $U_1 = -E_1 I_1 \cdot r_1 + I_1 \cdot j \cdot X_1$.
 - 2) $U_1 = E_1 I_1 \cdot r_1 I_1 \cdot j \cdot X_1$.

- 3) $U_1 = -E_1 + I_1 \cdot r_1 + I_1 \cdot j \cdot X_1$.
- 4) $U_1 = -E_1 + I_1 \cdot r_1 I_1 \cdot j \cdot X_1$.
- **36.** Выберите правильное написание уравнения баланса ЭДС для вторичной обмотки трансформатора.
 - 1) $U_2 = E_2 I_2 \cdot r_2 I_2 \cdot j \cdot X_2$.
 - 2) $U_2 = E_2 I_2 \cdot r_2 I_2 \cdot j \cdot z_H$.
 - 3) $U_2 = E_2 + I_2 \cdot r_2 + I_2 \cdot j \cdot X_2$.
 - 4) $U_2 = -E_2 + I_2 \cdot r_2 + I_2 \cdot j \cdot z_H$.
- **37.** Для создания кругового вращающегося магнитного поля в трёхфазной ЭМ переменного тока необходимо обеспечить определённый сдвиг между осями фазных обмоток.
 - 1) На 180 геометрических градусов.
 - 2) На 120 электрических градусов.
 - 3) На 60 электрических градусов.
 - 4) На 90 электрических градусов.
- 38. Как изменить направление вращения магнитного поля трёхфазной ЭМ?
 - 1) При соединении обмоток в звезду надо поменять местами друг с другом выводы каждой обмотки.
 - 2) При соединении обмоток в треугольник надо поменять местами друг с другом выводы одной обмотки.
 - 3) Независимо от схемы соединений надо поменять местами друг с другом любые две точки подключения обмоток машины к фазам сети питания.
 - 4) Независимо от схемы соединений надо выполнить круговую перестановку всех трёх точек подключения машины к фазам сети питания.
- **39.** Какая из частей асинхронного двигателя не может быть изготовлена из указанных материалов?
 - 1) Обмотка статора медь, алюминий.
 - 2) Сердечник статора электротехническая сталь.
 - 3) Сердечник ротора электротехническая сталь, алюминий.
 - 4) Обмотка ротора медь, алюминий, латунь.
- **40.** Какие виды потерь мощности имеются в асинхронных двигателях и как они изменяются при увеличении нагрузки, если $U_1 = const, f_1 = const?$ Укажите <u>неправильный</u> ответ.
 - 1) Электрические потери в обмотке статора увеличиваются.
 - 2) Электрические потери в обмотке ротора увеличиваются.
 - 3) Потери в стали уменьшаются.
 - 4) Механические потери постоянны.
- **41.** Как изменятся указанные ниже величины при увеличении момента нагрузки M_2 на валу трёхфазного асинхронного двигателя, если $U_1 = const$ и $f_1 = const$? Укажите неправильный ответ.
 - 1) Скольжение в увеличится.
 - 2) Потребляемый ток I_1 увеличится.
 - 3) Частота вращения магнитного поля n_1 останется постоянной.
 - 4) Электромагнитный момент двигателя M_{3M} уменьшится.
- **42.** Что произойдёт, если к валу асинхронного двигателя, работающего в номинальном режиме, приложить момент нагрузки, превышающий максимальный момент в полтора раза?
 - 1) Двигатель «пойдёт вразнос».
 - 2) Двигатель остановится.
 - 3) Частота вращения двигателя уменьшится в полтора раза.
 - 4) Скольжение превысит критическое в полтора раза.

- **43.** Как соединить обмотку статора трёхфазного асинхронного двигателя для работы при номинальном напряжении, если линейное напряжение питающей сети $U_1 = 380 \text{ B}$, а на паспорте двигателя указано номинальное напряжение 380/220 B?
 - 1) Звездой (Ү).
 - 2) Треугольником (Δ).
 - 3) Безразлично Υ или Δ.
 - 4) Данных недостаточно, чтобы определить способ соединения.
- **44.** Как изменится пусковой ток I_{Π} и пусковой момент M_{Π} асинхронного двигателя, если напряжение, подведённое к обмотке статора, уменьшится?
 - 1) I_{π} уменьшится, M_{π} увеличится.
 - 2) I_{π} и M_{π} останутся без изменений.
 - 3) I_{π} увеличится, M_{π} уменьшится.
 - 4) I_{Π} и M_{Π} уменьшатся.
- **45.** В каком из перечисленных способов пуска асинхронных двигателей с короткозамкнутым ротором пусковой момент наибольший?
 - 1) Прямое включение в сеть.
 - 2) Реакторный пуск.
 - 3) Автотрансформаторный пуск.
 - 4) Пуск при переключении обмотки со «звезды» на «треугольник».
- **46.** Для какой цели при пуске в цепь обмотки ротора асинхронного двигателя с фазным ротором вводят добавочное сопротивление?
 - 1) Для уменьшения пускового тока $I_{\text{п}}$ и пускового момента $M_{\text{п}}$.
 - 2) Для увеличения I_{π} и M_{π} .
 - 3) Для увеличения I_n и уменьшения M_n .
 - 4) Для уменьшения I_n и увеличения M_n .
- **47.** Уравнение тока асинхронной машины имеет вид $\underline{I}_1 = \underline{I}_m + (-\underline{I}_2)$. Как будет изменяться величина потребляемого тока I_1 при увеличении скольжения, если машина работает в режиме двигателя при $U_1 = \text{const}$?
 - 1) І₁ уменьшается.
 - 2) І₁ останется без изменений.
 - 3) I_1 увеличивается.
 - 4) Данных недостаточно, чтобы судить об изменении I₁.
- **48.** В каких пределах изменяется скольжение при работе асинхронной машины в режиме двигателя?
 - 1) $s = 1...\infty$.
 - 2) $s = 0...-\infty$.
 - 3) s = 0...1.
 - 4) s = 0.02...0.05.
- **49.** Если номинальная частота вращения асинхронного двигателя составляет $n_{\text{ном}} = 1420$ об/мин, то частота вращения магнитного поля составит...
 - 1) 3000 об/мин.
 - 2) 600 об/мин.
 - 3) 1500 об/мин.
 - 4) 750 об/мин.
- **50.** Чем отличается двигатель с фазным ротором от двигателя с короткозамкнутым ротором?
 - 1) Наличием контактных колец и щёток.
 - 2) Наличием пазов для охлаждения.
 - 3) Числом катушек статора.
 - 4) Схемой подключения обмотки статора.
- 51. Направление вращения магнитного поля асинхронного двигателя зависит от...
 - 1) Величины подводимого тока.
 - 2) Величины подводимого напряжения.

- 3) Порядка чередования фаз напряжения статора.
- 4) Частоты питающей сети.
- **52.** Максимальная частота вращения магнитного поля асинхронного двигателя при промышленной частоте 50Гц составляет...
 - 1) 1000 об/мин.
 - 2) 6000 об/мин.
 - 3) 3000 об/мин.
 - 4) 1500 об/мин.
- **53.** Для создания вращающегося магнитного поля асинхронного двигателя необходимы следующие условия...
 - 1) Наличие одной обмотки и включение её в сеть однофазного переменного тока.
 - 2) Пространственный сдвиг обмоток и фазовый сдвиг токов в них.
 - 3) Пространственный сдвиг обмоток и включение их в цепь постоянного тока.
 - 4) Включение статора в сеть трёхфазного тока, а ротора в цепь постоянного тока.
- **54.** Выберите наиболее распространенный вариант конструктивного исполнения сердечника ротора асинхронной машины.
 - 1) Массивный в виде отливки из чугуна.
 - 2) Шихтованный из листов электротехнической стали.
 - 3) Массивный из стали.
 - 4) Как шихтованный, так и массивный.
- **55.** Из какого материала и как обычно выполняется обмотка короткозамкнутого ротора по типу «беличьей клетки»? Укажите правильный ответ.
 - 1) Из алюминия при $P_{2H} > 100 \ {\rm kBT}$ методом заливки.
 - 2) Из меди при $P_{2H} > 100$ кВт методом заливки.
 - 3) Из алюминия при $P_{2H} < 100$ кВт методом заливки.
 - 4) Из меди при $P_{2H} < 100 \ \mathrm{kBt}$ с укладкой стержней в пазы сердечника ротора, изолированные электротехническим картоном, и последующей приваркой к концам стержней короткозамыкающих колец.
- **56.** В каком отношении находятся частота вращения ротора n_2 и частота магнитного поля статора $n_1 = 60 f_1/p$ трехфазной асинхронной машины в режиме двигателя.
 - 1) $n_2 < n_1$.
 - $n_2 = n_1$.
 - $n_2 > n_1$.
 - $n_2 \ge n_1$.
- **57.** Выберите правильную формулу для угловой частоты вращения магнитного потока статора.
 - 1) $\omega = 2\pi p/f$.
 - 2) $\omega = f \cdot p/2\pi$.
 - $\omega = 2\pi f \cdot p$.
 - 3) $\omega = 2\pi f/p$.
- **58.** Во сколько раз уменьшится пусковой ток трехфазного асинхронного двигателя при соединении фаз в звезду вместо треугольника?
 - 1) $\sqrt{2}$.
 - 2.
 - $\sqrt{3}$.
 - 3
- **59.** Выберите правильную формулу для скольжения *s*.
 - 1) $s = \frac{n_1 n_2}{n_2}$.
 - 2) $s = \frac{n_1 n_2}{n_1}$.

- 3) $s = \frac{n_2 n_1}{n_1}$.
- 4) $s = \frac{n_2 n_1}{n_2}$.
- 60. Выберите правильную формулу для частоты вращения магнитного потока АД.
 - 1) $n_1 = 60 p/f$.
 - 2) $n_1 = 60 f/p$.
 - 3) $n_1 = 60 f \cdot p$
 - 4) $n_1 = p \cdot f/60$.
- **61.** Из какого материала может быть изготовлена обмотка короткозамкнутого ротора общепромышленного асинхронного двигателя?
 - 1) Сталь.

Бронза.

Алюминиевый сплав.

Нихром.

- 62. Почему электрическая машина называется асинхронной?
 - 1) $n_1 = n_2$.
 - 2) $n_1 > n_2$.
 - 3) $n_1 \neq n_2$.
 - 4) $n_2 > n_1$.
- 63. Выберите правильную формулу мощности на валу асинхронного двигателя.
 - 1) $P_2 = n_2 \cdot M_2$.
 - 2) $P_2 = M_2/n_2$.
 - 3) $P_2 = M_2/\omega_2$.
 - 4) $P_2 = \omega_2 \cdot M_2$.
- **64.** Выберите правильную формулу для потребляемой активной мощности трехфазного асинхронного двигателя.
 - 1) $P_1 = m_1 E_2 I_2 \cos \psi_2$.
 - $P_1 = m_1 E_1 I_1 \cos \psi_1$.
 - $P_1 = m_1 U_1 I_1 \cos \varphi_1$.
 - $P_1 = m_1 U_1 I_2 \cos \varphi_1$.
- 65. Какая величина называется перегрузочной способностью асинхронного двигателя?
 - 1) M_H/M_{Π} .
 - 2) $M_{\text{II}}/M_{\text{H}}$.
 - 3) M_H/M_K .
 - 4) M_K/M_{Π} .
- **66.** Сумма потерь мощности асинхронного двигателя $\Sigma\Delta P$ составляет 50% от его полезной мощности P_2 . Определить КПД асинхронного двигателя η .
 - 1) $\eta = 67\%$.
 - 2) $\eta = 50\%$.
 - 3) $\eta = 75\%$.
 - 4) $\eta = 25\%$.
- **67.** Номинальная частота работы АД с короткозамкнутым ротором, питающегося от промышленной сети переменного тока, $n_2 = 950$ об/мин. Определить число пар полюсов p статорной обмотки данного двигателя и величину номинального скольжения $s_{\rm H}$.
 - 1) p = 1, $s_{\rm H} = 0.5$.
 - 2) p = 2, $s_{\rm H} = 0.05$.
 - 3) p = 3, $s_H = 0.05$.
 - 4) p = 1, $s_{\rm H} = 0.05$.
- **68.** Асинхронный двигатель с числом пар полюсов p = 1, критическим скольжением $S_{\kappa} = 0,2$ работает от промышленной сети переменного тока с нагрузкой на валу со

скольжением $S_1 = 0,1$. Определить частоту вращения ротора n_2 , если нагрузка на валу уменьшилась в 2 раза. Двигатель считать идеальным.

- 1) $n_2 = 2700$ об/мин.
- 2) $n_2 = 2850$ об/мин.
- 3) $n_2 = 3000$ об/мин.
- 4) $n_2 = 2600$ об/мин.
- **69.** Определить КПД η трехфазного АД в номинальном режиме, если постоянные потери $\Delta P_0 = 15$ кВт, переменные $\Delta P_{\sim} = 35$ кВт, а потребляемая из сети мощность P_1 =250 кВт.
 - 1) $\eta = 0.92$.
 - 2) $\eta = 1.08$.
 - 3) $\eta = 0.8$.
 - 4) $\eta = 0.2$.
- **70.** Три одинаковых АД имеют различное номинальное скольжение: $s_{\rm H1} = 0.08$, $s_{\rm H2} = 0.04$ и $s_{\rm H3} = 0.06$. Определить в каком соотношении находятся их КПД η_1, η_2, η_3 .
 - 1) $\eta_1 > \eta_2 > \eta_3$.
 - 2) $\eta_1 > \eta_3 > \eta_2$.
 - 3) $\eta_3 > \eta_2 > \eta_1$.
 - 4) $\eta_2 > \eta_3 > \eta_1$.
- **71.** Трехфазный асинхронный двигатель с кратностью пускового момента $K_{\rm II}=1,2$ находится в неподвижном состоянии. В момент запуска к его валу приложен момент сопротивления $M_{\rm c}=1,32~M_{\rm H}$, где $M_{\rm H}$ номинальный момент двигателя. Определить величину скольжения s двигателя по истечении времени, достаточного для разгона двигателя:
 - 1) $s = s_{H}$.
 - 2) $s = 0.9 s_{\text{H}}$.
 - 3) s = 1.
 - 4) $s = 1.32 s_{\text{H}}$.
- **72.** Трехфазный АД подключен к сети переменного тока с фазным напряжением $U_1 = 220$ В. При номинальной нагрузке активная мощность, потребляемая двигателем из сети $P_1 = 250$ Вт, а фазный ток при этом равен $I_1 = 0,5$ А. Определить соѕф двигателя при номинальной нагрузке.
 - 1) $\cos \varphi \approx 0.44$.
 - 2) $\cos \varphi \approx 0.76$.
 - 3) $\cos \varphi \approx 0.87$.
 - 4) $\cos \varphi \approx 0.57$.

- 4. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций
- 4.1 Положение о формах, периодичности и порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся -- П ВГАУ 1.1.05 2014

4.2 Методические указания по проведению текущего контроля

		,					
1.	Сроки проведения текущего	На лабораторных занятиях и на лекциях					
	контроля						
2.	Место и время проведения	В учебной аудитории в течение занятия					
	текущего контроля						
3.	Требования к техническому	В соответствии с ОПОП и рабочей программой					
	оснащению аудитории						
4.	Ф.И.О. преподавателя (ей),	Прибылова Наталья Викторовна					
	проводящих процедуру						
	контроля						
5.	Вид и форма заданий	Собеседование, устный или письменный опрос,					
		тестирование, контрольная работа, рефераты					
6.	Время для выполнения заданий	В течение занятия и во внеучебное время					
7.	Возможность использований	Обучающийся может пользоваться					
	дополнительных материалов.	дополнительными материалами					
8.	Ф.И.О. преподавателя (ей),	Прибылова Наталья Викторовна					
	обрабатывающих результаты						
9.	Методы оценки результатов	Экспертный					
10.	Предъявление результатов	Оценка выставляется в журнал и доводится до					
		сведения обучающихся в течение занятия					
11.	Апелляция результатов	В порядке, установленном нормативными					
		документами, регулирующими образовательный					
	II	- · · · · · · · · · · · · · · · · · · ·					
		процесс в Воронежском ГАУ					