АННОТАЦИЯ рабочей программы учебной дисциплины

2.1.2.1 Маркер-ориентированная селекция

1. Общая характеристика дисциплины

1.1. Цель дисциплины

Целью освоения дисциплины является формирование у обучающихся представлений, теоретических знаний и умений в области практической генетики и селекции растений, ускорения селекционного процесса с использованием новейших генетических подходов, и создания на их основе сортов и гибридов сельскохозяйственных культур, а также развитие способностей, ориентированных на научно-исследовательскую работу.

1.2. Задачи дисциплины

- формирование способности оперировать базовыми знаниями по современным методам создания сортов и гибридов;
 - овладение знаниями по методике и технике селекционного процесса;
- знание современных методов подбора, создания и оценки исходного материала для селекции;
 - формирование умений подбора исходного материала для селекции;
- формирование навыков проведения фенотипических, биохимических и молекулярно-генетических маркерных анализов исходного и селекционного материала;
 - изучение особенностей производства оригинальных семян.

1.3. Предмет дисциплины

Дисциплина **2.1.2.1 Маркер-ориентированная селекция** формирует знания, необходимые в области практической генетики и селекции растений, ускорения селекционного процесса с использованием новейших генетических подходов, и создания на их основе сортов и гибридов сельскохозяйственных культур, а также развитие способностей, ориентированных на научно-исследовательскую работу.

1.4. Место дисциплины в образовательной программе

Дисциплина **2.1.2.1 Маркер-ориентированная селекция** относится к дисциплинам Блока 2 Образовательный компонент, разделу 2.1.2 Дисциплины (модули) по выбору.

1.5. Взаимосвязь с другими дисциплинами

Дисциплина **2.1.2.1 Маркер-ориентированная селекция** взаимосвязана с такими дисциплинами, как: Селекция, семеноводство и биотехнология растений, Паспортизация селекционных достижений, Современные концепции защиты интеллектуальной собственности селекционных достижений, Иностранный язык.

2. Планируемые результаты обучения по дисциплине

Компетенция		Планируемые результаты обучения
Код	Название	

ПК-2	Способен к анализу генетических коллекций с целью подбора исходного материала для создания сортимента с комбинацией хозяйственно-полезных признаков и свойств с использованием современных селекционных методов: генотипирования, фенотипирования и др.	Знает основные законы математических, естественнонаучных и общепрофессиональных дисциплин, необходимых для решения типовых задач в области агрономии Использует знания основных законов математических и естественных наук для решения стандартных задач профессиональной деятельности Решает типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий
ПК-3	Способен осуществлять экспериментальный дизайн селекционногенетических экспериментов, применять полевые и лабораторные методы оценки и отбора форм с целевыми хозяйственнополезными признаками и свойствами.	Знает современные технологии в профессиональной деятельности, знает технологии возделывания сельскохозяйственных культур в открытом и закрытом грунте Умеет обосновывать применение современных технологий в профессиональной деятельности Реализует современные технологии в профессиональной деятельности
ПК-5	Способен применять биотехнологические методы, маркерориентированную селекцию, генетическое фенотипирование на разных этапах селекционной схемы для повышения эффективности создания, оценки и отбора селекционного материала и воспроизводства в процессе семеноводства	Знает форму и структуру отчета о результатах сортоиспытания, порядок ведения Государственного реестра селекционных достижений, регламент принятия решения по заявке на выдачу патента на селекционное достижение Умеет оценивать отличимость, однородность и стабильность сорта в соответствии с действующими методиками испытаний Имеет навык описания сорта с заключением о его отличимости от общеизвестных сортов, однородности и стабильности на основе проведенных испытаний и сортов, впервые включаемых в Государственный реестр селекционных достижений, допущенных к использованию

3. Содержание дисциплины

Введение.

Ввиду высокой информативности молекул ДНК в мировой научной практике наблюдается стремительный рост числа методов молекулярно-генетического анализа культурных растений с использованием молекулярных маркеров, которые известны также под названием ДНК-маркеров. Эти же методы анализа молекул ДНК могут быть использованы для генетической паспортизации сортов сельскохозяйственных культур вместо малоинформативных методов анализа белковых маркеров.

Раздел 1. Генетика как научная основа селекции растений.

Понятие о селекции и семеноводстве. Связь ее с другими науками. История и этапы развития селекции. Коллекционный, исходный материал и его значимость для практической селекции. Виды исходного материала и способы его получения (естественные популяции, гибридные популяции, самоопыленные (инцухт) линии, искусственные мутации и полиплоидные формы). Понятие о маркерах. Биохимические и молекулярные маркеры.

1.1.Понятие о маркерах. Биохимические и молекулярные маркеры.

На сегодняшний день технологии выявления молекулярных или ДНК-маркеров становятся важным стандартом селекции растений и получают все более широкое применение по всему миру. Их использование позволяет точно и быстро выявлять генетическое разнообразие популяций, подвидов, видов, и даже дифференцировать более высокие таксономические ранги - рода и семейства, а также делает возможным создание генетических фингерпринтов ("отпечатков пальцев") сортов, и эффективно, с точки зрения затрат, определять хозяйственно-ценные признаки еще на начальном этапе селекции на уровне ДНК. Эти же методы могут стать основой для генетической паспортизации сортов, линий и гибридов различных культурных растений.

1.2. ПЦР – полимеразная цепная реакция.

Понятие о ПЦР. Методы ПЦР. Методика проведения. Используемые маркеры. Паспортизация сортов. Возможности метода.

Использование в селекции. Полимеразная цепная реакция (ПЦР) является одним из наиболее широко используемых методов молекулярной биологии поскольку она позволяет быстро и с небольшими затратами материальных ресурсов и времени получить более 10 миллионов копий определенной последовательности ДНК, первоначально представленной всего несколькими молекулами.

Стартовым материалом для ПЦР может служить ДНК или РНК из различных источников, например, геномная ДНК, матричные РНК, плазмидная ДНК, клонированная ДНК, сами ПЦР-продукты, ДНК из клинического или архивного материала. Различные модификации метода ПЦР широко используются в различных областях биологии, медицины и криминалистики.

В селекции и семеноводстве сегодня это основной метод паспортизации селекционных достижений, определения генетической чистоты линий и гибридов различных культур, основа маркерной селекции.

Благодаря ПЦР можно надежно установить происхождение семенного материала, установить отцовство, идентифицировать любые органические следы.

Аллель – маркер генетического анализа. Геномика "видит" аллель как маркер физический – один из альтернативных вариантов последовательности нуклеотидов данного локуса. ДНК маркер это одновременно маркер и генотипа и фенотипа (как наблюдаемый вариант последовательности нуклеотидов).

Раздел 2. Поиск и создание маркеров

Использование ДНК маркеров в селекции растений с помощью Маркер Опосредованной Селекции (МОС) может увеличить точность и эффективность селекции и приведет к ускорению создания новых сортов. В мире созданы десятки таких лабораторий, их необходимо создавать и в нашей стране.

2.1. Основы маркерной селекции

Marker assisted selection (MAS) = Маркер Ориентированная Селекция (МОС). Преимущества в сравнении с традиционным скринингом по фенотипу.

Однотипна для всех видов, индивидов и локусов. Экономит время, усилия и ресурсы. Неразрушающий метод анализа. Данные для отбора м.б. получены из любой ткани и на любой стадии развития. Возможность удаления всех нецелевых индивидов и сохранения только целевых для дальней шей работы после анализа (напр. на этапе проростков). Возможность отбора единичного растения и точное определение его генотипа, включая гомо или гетерозиготность.

20 программ MAS в США идут с 2001 года

2.2. Маркерная селекция при создании аналогов

Создание аналогов — неотъемлемая часть селекционной работы. Одна из самых рутинных и длительных процедур (занимает от трех лет при получении двух поколений за год до 6 лет и более) — осуществляется при помощи возвратных скрещиваний. Единственный метод селекции, дающий гарантированный результат. Применяется при создании стерильных аналогов, аналогов восстановителей фертильности, а также для придания существующему сорту (линии, гибриду) нового (обычно моногенного) признака, чаще всего устойчивости к какому-либо патогену или признака качества.

Использование маркера позволяет в самом простом случае (при наличии одного маркера – маркера гена переносимого признака) контролировать наличие нужного гена на ранних стадиях развития, выбраковывая ненужные особи сразу, и таким образом значительно уменьшив выборку и объем работ в целом.

Использование значительного количества маркеров, маркирующих большую часть генома сорта-реципиента, позволяет в принципе ограничиться двумя беккроссами и просто выбрать нужный вариант из большой выборки. В этом случае создание аналога может быть осуществлено за год-два.

2.3. Картирование генов QTL. Использование QTL в практической селекции

На современном этапе развития генетики широко используются QTL

– ДНК-маркеры генов количественных признаков. При этом селекция на повышение урожайности строится по принципу маркерной селекции.

Сначала осуществляют поиск локусов количественных признаков в расщепляющихся популяций. После их обнаружения и картирования возможно использование принципов маркерной селекции для повышения урожайности.

Сложность работы заключается в необходимости контролировать огромное число локусов одновременно. Это возможно только на современном высокопроизводительном оборудовании.

2.4. Хромосомная инженерия (моносомики, трисомики и нуллисомики)

Отдаленная гибридизация (межродовые скрещивания). селекции пшеницы используют межродовую гибридизацию. Гибридизация с видами, отличающимися по числу хромосом от пшеницы, которые к тому же негомологичны ее хромосомам, в конечном счете приводит в результате расщепления к исходным родительским формам (то же наблюдается при межвидовых скрещиваниях внутри рода Triticum, если геномы родителей различны). Этот процесс ускоряется путем возвратных скрещиваний гибридов с пшеницей для преодоления бесплодия первого поколения и получения в потомстве большого числа форм, уклоняющихся в сторону пшеницы. Скрещивания ведут в расчете на интрогрессию отдельных генов или участка хромосомы родственного вида в геном пшеницы.

Использование анеуплоидии. Получение у пшеницы мягкой (гексаплоидной) моносомных и нуллисомных линий открыло широкие перспективы для использования хромосомной инженерии в селекционных целях. Оказалось возможным замещать у какоголибо сорта пару хромосом гомологичными хромосомами другого сорта и даже хромосомами родственных видов (рожь, эгилопс), добавлять хромосому этих видов к геному пшеницы, а также добиваться путем транслокации включения сегментов хромосом других видов в хромосомы пшеницы.

Наиболее проста схема внутривидового замещения хромосом с использованием нуллисомиков. Процедура сводится к скрещиванию нуллисомика сорта-реципиента с донором и серии беккроссов для вытеснения ядерного материала донора с сохранением замещающей хромосомы. Потомство каждого беккросса подвергают цитологическому анализу, чтобы выделить для дальнейшей работы моносомик, который несет замещающую хромосому. Такой же анализ ведут для выделения дисомика с замещающими хромосомами в расщеплении после заключительного само-опыления.

Схема с использованием моносомиков сложнее, но применяется чаще, так как они более жизнеспособны, чем нуллисомики, у которых нередко проявляется мужская стерильность. При этом способе в расщепляющихся поколениях после каждого скрещивания следует отбирать моносомики, а в потомстве от их самоопыления — дисомики для дальнейшего скрещивания.

Схема может быть упрощена, если вместо моносомиков использовать монотелосомики, т. е. линии, у которых единственная хромосома представлена только одним плечом с центромерой. Это дает возможность распознать ее при цитологическом анализе и исключает необходимость самоопыления моносомиков в потомстве каждого скрещивания.

Используя для второго этапа замещения не нуллисомик, а моносомик, можно получить растения, у которых одна хромосома пшеницы сочетается с чужеродной. Если они частичные гомологи, то возможна транслокация хромосомных сегментов. При использовании облучения вероятность транслокаций увеличивается.

Раздел 3. Генетическая инженерия

Генетическая инженерия – совокупность техник, позволяющих направленно изменять генотип живого организма путем встраивания в его геном чужеродных генов. Эти

гены могут быть искусственно синтезированы или взяты от других организмов, скрещивания с которыми обычным путем невозможны.

Организм, полученный с помощью генной инженерии, называется генетически модифицированным (ГМО). Целью создания ГМО является улучшение сельскохозяйственных растений, животных и микроорганизмов, невозможное методами традиционной селекции.

На сегодняшний день созданы генетически модифицированные сорта растений, устойчивые к системным гербицидам, вредителям и болезням, которые занимают очень существенные площади в мировом земледелии.

3.1. ГМО. Этапы созлания.

Основные этапы создания ГМО:

- 1. Получение изолированного гена.
- 2. Введение гена в вектор для переноса в организм.
- 3. Перенос вектора с геном в модифицируемый организм.
- 4. Преобразование клеток организма.
- 5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Чтобы встроить ген в вектор, используют ферменты — рестриктазы и лигазы. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.

Техника введения генов в бактерии была разработана на основе бактериальной трансформации, открытой Ф. Гриффитом, в ходе которой осуществляется обмен плазмидами (небольшими фрагментами нехромосомной ДНК). Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Для введения готового гена в наследственный аппарат клеток растений и животных используется процесс трансфекции.

4. Форма промежуточной аттестации

Зачет.