АННОТАЦИЯ

рабочей программы учебной дисциплины

2.1.3.2 Статистический анализ данных селекционно-генетических исследований

1. Общая характеристика дисциплины

Цель дисциплины — в современных биологических науках широко используются точные количественные и качественные методы исследований, что обозначает проблему адекватной обработки получаемых данных, их хранение и передачу информации в различных коммуникационных сетях. Все это обуславливает необходимость применения аспирантами понятий и методов из области математической статистики и информатики, таких как процессы сбора, передачи и накопления информации; технические и программирование; базы данных и др. Целями освоения дисциплины 2.1.3.2 Статистический анализ данных селекционно-генетических исследований являются: 1) научить обучающихся современным методам статистической обработки данных с использованием персональных компьютеров и ЭВМ в селекционных экспериментах; 2) сформировать у аспирантов умения самостоятельно проводить математический анализ задач, возникающих при проведении биологических исследований и при статистической обработке биологической информации. Задачи дисциплины:

- определение роли математики в информатизации селекции;
- рассмотрение статистических пакетов как совокупности программного обеспечения, позволяющей осуществлять процессы подготовки, обработки и передачи результатов исследования на основе компьютерных технологий;
- учет особенностей реализации интегрированных информационных технологий и применения их в селекции и биотехнологии.

Предметом дисциплины 2.1.3.2 Статистический анализ данных селекционногенетических исследований являются методы статистического анализа и статистической обработки опытных данных. Статистические законы в селекции действуют независимо от исследователя. Объективность действия статистических законов, вероятностный характер подавляющего большинства явлений, с которыми имеет дело биолог, определяет необходимость не только широкого привлечения соответствующих математических методов, но прежде всего умения мыслить вероятностно-статистическими категориями.

2. Планируемые результаты обучения по дисциплине

Компетенция		Планируемые результаты обучения
Код	Название	

УК-3	способностью и готовностью	Знает основные методики проведения и
	к использованию	постановки научных опытов с использованием
	образовательных технологий,	современных методов исследования и
	методов и средств обучения	информационно-коммуникационных технологий.
	для достижения	Умеет применять полученные знания в
	планируемых результатов	практической и научной деятельности.
	обучения по основным	Имеет навыки и (или) опыт деятельности
	образовательным про-	проведения научно-исследовательской
	граммам высшего	деятельности теоретических и практических
	образования.	знаний.
ПК-3	Способен осуществлять	Знает основные понятия и методы теории
	экспериментальный дизайн	вероятностей и математической статистики;
	селекционно-генетических	специфику математических методов,
		применяемых в
	экспериментов, применять	биологических исследованиях.
	полевые и лабораторные	Умеет использовать в познавательной и
	методы оценки и отбора форм	профессиональной деятельности базовые знания в
	с целевыми	области математики и естественных наук,
	хозяйственнополезными	применять методы математического анализа и
	признаками и свойствами.	моделирования, теоретического и
		экспериментального исследования.
		Имеет навыки и (или) опыт деятельности создания
		баз данных по результатам исследований.

3. Содержание дисциплины

Раздел 1. Теоретические основы статистических методов анализа

В данном разделе даются основные понятия, термины, закономерности, свойства случайной величины, используемые в различных статистических методах (испытания, события, случайная величина, статистическая совокупность, выборка, их объем, репрезентативность выборки и способы ее повышения, вариационный ряд, мода, медиана, математическое ожидание, частность, вероятность, гистограмма, полигон частот, функции распределения случайной величины, дисперсия, стандартное отклонение, законы распределения случайной величины, свойства и закономерности нормальной случайной величины, математическое ожидание, дисперсия, стандартное отклонение, ошибки репрезентативности, доверительный интервал, критерии Стьюдента, Фишера.

Базы данных биологических исследований. Программы для работы с базами данных. Создание базы данных в Statistica 11 и EasyStatistics. Работа с фильтрами. Выбор переменных и случаев. Импорт и экспорт баз данных и результатов. Перекодирование переменных. Редактирование базы данных.

Основные понятия статистики. Типы переменных. Основные типы распределений. Проверка нормальности распределения. Зависимые и независимые переменные. Нулевая и рабочая гипотезы. Контрольная и экспериментальная группы. Оценка полученных результатов. Уровень значимости.

Описательные статистики. Показатели центральной тенденции (средние величины, медиана, мода). Показатели вариации (дисперсия, стандартное отклонение,

ошибка средней, коэффициент вариации). Показатели асимметрии и эксцесса. Построение графиков в Excel по полученным данным.

Раздел 2. Методы статистической обработки опытных данных

В данном разделе даются общие представления о принципах дисперсионного, корреляционного и регрессионного анализов, методика расчетов, сущность, использование и интерпретация полученных результатов.

Корреляционный анализ. Область применения. Коэффициенты корреляции Пирсона и Спирмена. Корреляционные плеяды. Оценка значимости коэффициента корреляции. Способы возникновения корреляционной связи.

Регрессионный анализ. Основные формы зависимостей в биологических исследованиях. Метод наименьших квадратов. Применение парного линейного уравнения. Множественная регрессия. Корреляционно-регрессионные модели. Частная корреляция.

Сравнение независимых выборок. Область применения. Независимые переменные и особенности их создания. Т-критерий Стьюдента для разных и общей дисперсий. Fкритерий Фишера. U-критерий Манна-Уитни. Критерий Шеффе. Оценка значимости полученного критерия.

Сравнение зависимых выборок. Область применения. Зависимые переменные. Ткритерий Стьюдента для связанных выборок. Т- критерий Вилкоксона для связанных выборок. Оценка значимости полученного критерия.

Дисперсионный анализ. Общая, внутригрупповая и межгрупповая дисперсия. Способы измерения. Дисперсионный анализ Фишера. Дисперсионный анализ Краскела Уоллиса.

Статистические методы для номинальных переменных. Таблицы 2х2. Работа с процентами и долями. Критерии хи-квадрат, хи-квадрат с поправкой Йейтса, точный тест Фишера, тест Мак-Немара. Т-критерий Стьюдента для долей.

Анализ динамических явлений. Основные термины (уровень, рост, прирост). Средняя хронологическая. Оценка динамических явлений. Выравнивание. Методы удлинения периодов и скользящей средней. Метод наименьших квадратов.

Анализ циклических явлений. Метод обычных и корригированных средних. Метод отношения фактических данных к 12-месячным цепным средним. Ошибки, допускаемые при количественной характеристике сезонных колебаний.

Многомерные методы анализа. Область применения и ограничения. Кластерный анализ (иерархическое дерево и метод К-средних). Факторный анализ (факторные нагрузки, вращение). Дискриминантный анализ (дискриминантные функции и матрицы). Интерпретация полученных результатов.

4. Форма промежуточной аттестации: зачет.